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Opening StatementOpening Statement
• Artificial materials
• Performance beyond limitations of 

conventional composites
• Low-dimensional metaparticles
• Periodic cellular architecture
• Maybe create optical magnetism



ε<0 μ<0

Interesting area of research

ε = permittivity, μ = permeability
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Split-ring resonator

Adding magnetic momentsAdding magnetic moments



MetamaterialsMetamaterials
• Basically, what 

could they be?

• The big idea:
Considerably 
enhance the 
magnetic 
propertiesMoser PRL 94, 063901 (2005)

Magnetic resonanceMagnetic resonance

Low THz
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Dolling et al. Opt. Lett. Dolling et al. Opt. Lett. 3232 53 (2007)53 (2007)
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Rill, Plet, Thiel, Staude, Freyman, Linden, Wegener, Nature Materials (Advance 
online publication) 1-4, (2008)

Photonic Metamaterials by Direct Laser Writing 
and Silver Chemical Vapour Deposition
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Field emission SEM images 
of Split-ring Resonators (SRR)

Four layer SRR structure Enlarged Oblique view

Liu, Guo, Fu, Kaiser, Schweizer, Giessen, Nature Materials, 7, 31-37 (2007)



NanospheresNanospheres

AluAlu et. al, Opt. Exp. et. al, Opt. Exp. 1414, 1557 (2006), 1557 (2006)

Magnetic resonance Electric resonance
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Trapped RainbowsTrapped Rainbows

Tsakmakidis, Boardman, Hess, Nature (submitted July 2007)



Trapped RainbowTrapped RainbowTrapped Rainbow

Tapered Waveguide

Ordinary Metamaterial Core

Guided Wave
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Gain with Gain with nanostripsnanostrips

KlarKlar et al. IEEE J. Sel. Top. Q. Elec., et al. IEEE J. Sel. Top. Q. Elec., 1212 (2006)(2006)



NPM

Optical Parametric Amplification

A.K. Popov and V.M. Shalaev Optics Lett. 31, 2169 (2006)  

Signal backward wave

Pump forward wave

Idler forward wave

OPA causes 
energy to flow 
from the 3 to 1 

through the 
idler wave k2

Δk = k3 – k2 – k1

NPM = negative phase velocity medium ≡ LHM (“left-handed” medium)
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How do we deal with losses?How do we deal with losses?

• Add internal gain using active inclusions 
e.g. diodes

• Use optical pumping at higher frequencies
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Mapping complex Mapping complex ωω--plane onto plane onto 
complex complex kk--planeplane

SADDLE-POINTSADDLE-POINT
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CROSSING WAVES IN SHALLOW WATER
( Branksome Chine near Bournemouth)



Gravity waves on deep water
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1834: John Scott Russell
First Observation: Solitary wave

Solitons for computing, 
nanophotonics, biology ...

1965-67 Zabusky and Kruskal
Solitons and Inverse Scattering

New Dawn

1895 Korteweg- de Vries
(KdV Solitons)

1953 & 1962 Solution of sine-Gordon
Equation: Skyrmions



Beam Diffraction
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Nonlinear Diffraction
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Boardman et al. Opt. Quant. Elec. 32 49 (2000)



Soliton Entering Composite

Host only Host and NPM 
composite
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Compensation with no 
nonlinear diffraction 

D = 10%( ) { }ψ x,0 = sech x

Compensation with 
nonlinear diffraction 



How Does Diffraction Management Affect Coupling?

Input



More Possibilities



Beating the Diffraction limit

Pendrys
Perfect lens

Superlens
and

Hyperlens

meta

Zhang et al. Opt. Exp. 15, 15886, (2007)

Smolynaninov, PRB 76, 205424, (2007)



Optical Storage
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Sub-wavelength Transmission

Al, Bilotti, Engheta, Vegni, IEEE Trans. Ant. Prop. 54, 1632 (2006)



Cloaking

0<n<1

Pendry, Schurig, Smith, Science, 312, 1780 (2006).

Pulling 
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space



• Metamaterials have a promising and 
fascinating future

• 2D and 3D metamaterials with loss 
control will become mainstream

• Nonlinearity and tunability are in sight
• The race is on towards the visible and 

depends upon nano-technology
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